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On Impasse Points of Quasilinear Differential Algebraic Equations'

BY

PATRICK J. RABIER AND WERNER C. RHEINBOLDT 2

1. Introduction.

An implicit differential algebraic equation (DAE) has the form F(x, ) 0 of a general

ordinary differential equation (ODE) but involves a (sufficiently smooth) mapping F :

R' x R ' -- R", F = F(x,p). for which rank DPF(x,p) - r < n is constant but not full

in F-1(0). The terminology derives from the fact that, in practice, the simplest DAE

problems are of the form

I12 =f(X1,,X 2), (X,,X2) - x R,

where g and f map into In - r and Rr, respectively, and thus exhibit clearly a differential

and an algebraic part.

Because of the rank condition a DAE does not reduce locally to an explicit ODE via the

implicit function theorem. Nevertheless, local reduction of a DAE to an explicit ODE on a

submanifold of R" was recently shown to be feasible under general assumptions ruling out

certain geometric singularities ([RR91b]). The combination of this reduction procedure

I with standard ODE results yields an existence and uniqueness theory for "nonsingular"

DAE's ([RR91a],[RR91b]) which is applicable to many problems.

While the above stresses strong analogies between DAE's and classical (that is, explicit) L

ODE's. important differences exist. For instance, a DAE F(x,:i) = C ieed not have a
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solution satisfying the initial condition x(O) = xo, i(0) = p0 under the sole hypothesis that

F(xo,po) = 0; in fact, further compatibility conditions are usually required of (xopo) for

such a solution to exist. Next, solutions of DAE's may exhibit features that solutions of

explicit ODE's cannot possess. As an example with n = 2, consider the DAE

1~~X (11 {X~ 2 = 0,

with the initial condition x(0) = (1, -1) (and hence i(0) = (-1/2, 1)). This problem has

the unique solution x(t) = ((1 - t)'/ 2 ,t - 1), which cannot be continued beyond t = 1

despite the fact that x(1) = (0,0) exists and lim x(t) = x(1). If, instead, x(t) were

characterized as a solution of an explicit ODE i = h(x) with continuous h, it would follow

from the initial condition x(1) = (0, 0) that x(t) can be continued beyond t = 1.

The point (0, 0) where the solution x(t) = ((1 - t) 1 / 2 , t - 1) of (1.1) terminates in finite

time t = 1 is an impassse point, as they are called in the engineering literature, especially

in connection with nonlinear LRC circuits (see e.g. [C69], [CD89]).

We concentrate here on quasilinear equations

(1.2) A(x)i = G(x),

where A = R - £(R n ) satisfies rank A(x) = r < n whenever G(x) E rge A(x). This

corresponds to the choice F(x,p) = A(x)p - G(x) when F is linear in p. The purpose

of this paper is to provide a mathematical characterization of the impasse points of such

quasilinear DAE's which, to date, is lacking in general. However, the recent work by

Chua and Deng [CD89] contains partial results for the special case when A is a constant

projection.

Despite their rather special structure, quasilinear DAE's are relevant in a large number

of physical problems. Obviously, ,.,e simple 2 x 2 example (1.1) fits into this framework.

Moreover, nonautonomous problems A(t, x)+ = G(t, x) can also be brought into the form

(1.2) by adding the equation t = 1.

Although impasse points have no analogue in the solutions of explicit ODE's. they are

strongly reminiscent of "standard singular points" of singular ODE's. Singular ODE's
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differ from DAE's in that, when considered in the form (1.2), the matrix A(x) fails to have

full rank n only at exceptional points. As shown in [R89] the most frequently encountered

type of singularity for a singular ODE is a standard singular point x,, where exactly two

solutions(') either emanate or terminate. This is exactly the case in the simple example

(1.1) where t '-4 (-(1 -t)l/ 2 ,t- 1) is a solution, different from x(t) = ((1 -t) 1 / 2 , t- 1), that

terminates at (0, 0) for t = 1. This strongly suggests that, in the vicinity of an impasse

point, a DAE (1.2) can be reduced to a singular ODE with a standard singular point.

In our presentation here, the possibility of performing such a reduction will serve as an

equivalent mathematical definition for impasse points.

For convenience, the main results about singular points are summarized in Section 2.

A reduction procedure for DAE's, which is essentially, but not completely, a specialization

of the method in [RR91b] to the quasilinear case, is described in Section 3. The value of

this procedure is to reduce the index of a DAE, and in particular to make an index 1 DAE

into an implicit ODE that may or may not be singular. The short Section 4 summarizes

the existence theory of [RR91b] for the index 1 quasilinear DAE's.

Impasse points are defined in Section 5. We have chosen to give a coordinate-free but

rather abstract definition based upon the concept of intrinsic derivatives of a vector bundle

morphism. This definition is equivalent to a simpler, coordinate dependent one, which is

useful in most practical applications (Lemma 5.1).

In some simple but frequent cases, impasse points turn out to coincide with foldpoints

of a specific manifold relative to some splitting of the ambient space. These matters are

considered in Section 6 and relate to the results of [CD89].

Section 7 is devoted to two examples. The first example is a concrete one taken from

electrical network theory. The second example shows that one-parameter stationary prob-

lems can be reformulated as DAE's and is meant to emphasize the fact that the study

of DAE's, including impasse points and singularities (an aspect not touched upon here)

encompasses all the issues usually investigated in the framework of bifurcation theory.

The theory can easily be extended to higher index problems (provided that the index

is well defined). Here. the validity of our results for nonconstant A(x) in (1.2) is essential,

(1 )Nlodulo translations in time sinc. (1.1) is autonomous.
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even if A(x) is constant in the given higher index problem. Some related comments can

be found in Section 8.

2. Standard Singular Points of Singular ODE's: A Brief Review.

The material presented here is taken from [R89] but our notation corresponds to that

used below in this paper. We begin by introducing the following terminology:

Definition 2.1. Consider the implicit ODE

(2.1) A,(,) = Gi(,),

where A 1 : Ur -* -(R') and G1 : Ur --+ Rr are C' mappings defined on some open set

Ur C 1Rr. A point E Ur is a regular point of(2.1) if rank A,( ) = r and a singular point

if rank A,(f) < r but is a limit point of regular points of"(2.1).

Clearly, for any regular point . E Ur and given t. the initial value problem

(2.2) A()=I(, t)=

has a unique solution in a neighborhood of .. But already simple examples show that for

a singular point . the existence and number of soltions of (2.2) in the neighborhood of

. depends strongly on the character of the singularity at that point. The most frequent

and also simplest case is the following:

Definition 2.1. A singular point E U' of (2.1) is a standard singular point i

(2.3) dimkerA,(f) = 1 ( i.e. rank Ai( = r - 1),

(2.4) G( ) rge Ai( ),

(2.5) (DA( )?J)J 7 rge Am( ), V7j E kerA,( )-, {0},

In particular. if (2.1) has a standard singular poin then such points will exist for

every problem obtained by a sufficiently small perturbation of (2.1). Moreover, the set of

standard singular points of (2.1) is either empty or forms a hypersurface of Ur, and. at



least in the C' case, the standard singularities are the only singularities that satisfy the

latter condition for generic choices of A1 and G1 (see [R89]).

Remark 2.1: The fact that standard singular points of (2.1) lie on a hypersurface,

if they exist at all, has an important consequence regarding the dynamics. Indeed, if a

solution of the initial value problem (2.2) for some regular point o tends, at some later

time, to a standard singular point, then the same will happen also with any trajectory

passing through a point 0 sufficiently close to o. In other words, standard singular points

cannot be by-passed by simply perturbing the initial condition. 0

If . is a standard singular point of (2.1), the condition (2.4) makes it impossible for

any C' function [t.,t. + T) --+ R' with (t.) = {. to be a solution of (2.1) since the

relation A,( .) (t.) = Gi( .) cannot hold. This remark suggests the following definition.

Definition 2.3. Let . be a standard singular point of (2.1). A solution of the initial

value problem (2.2) for given t. E R is a continuous function : J C R1 -* Ur on either

J = [t., t. + T) or J= (t. - T, t.] for some T > 0 which is of class C' on P = J

and satisfies (t.) = . and A,( (t)) (t) = G,( (t)) for t E Jo.

Evidently the two conditions (2.4) and (2.5) are equivalent with

a( (r,=) (G( ), ) ((DA ( ) 71)r77, ) 0 0,

(2.6) Vi7 E kerA, () N\ {0}, E kerA,( ) T  ) {}

where (.,-) denotes the natural inner product of R'. Since the form a( )(77, ) is continuous

and quadratic in 71 as well as i it must have either a positive or negative value for all pairs

of nonzero vectors (77, ) in ker AI( ) x ker AI( )T if only this holds for one such pair.

The main result ([1389, Theorem 5.1]) on the existence of solutions near standard sin-

gular points can then be phrased as follows:

Theorem 2.1. Let . be a standard singular point of(2.1). Then, given t. E R. the initial

value problem (2.2) has exactly two solutions which are both defined on J = [t., t. + T)

or on J = (t. - T, t.] for some T > 0 ifo( )(i , f) > 0 or a( .)(77, )) < 0 for some pairs

of nonzero vectors (i;,r) E kerAl( .) x kerAi( .) T , respectivelY. Furthermore. 1k()I

tends to 3c, as t E .1 - {t. } tends to t.



It follows from Theorem 2.1 that a solution of (2.1) emanating from some regular point

can reach a standard singular point . at some later time only if the quantity a( .) of (2.6)

is negative. Standard singular points . with positive a( .) obviously cannot be reached

in increasing time. Thus, it is appropriate to introduce the following terminology:

Definition 2.4. The standard singular point . of (2.1) is accessible or inaccessible if

o( .)(i/, ) > 0 or a( .)(7, ?) < 0, respectively, for some pair of nonzero vectors 71, in

kerA,( .) x kerA,( .) T .

In [R89], accessible and inaccessible points are called attracting and repelling, respec-

tively, but the terminology used here appears to be more appropriate. Of course, by

reversing the evolution in time, inaccessible points become accessible and vice-versa.

It follows from Theorem 2.1 that accessible standard singular points are reached in

finite time by trajectories emanating elsewhere in U'. Since these trajectories cannot be

continuously extended beyond these points, they represent "catastrophes" for the solutions

of (2.1). This is further emphasized by the fact that, as mentioned in Remark 2.1, no small

perturbation of the initial condition (and/or of A, or G1 ) will affect the eventual encounter

of such points. In this respect, note that the sign condition in (2.6) is unchanged if A 1,

G1 and . are replaced by sufficiently small approximations.

Although they cannot be reached, inaccessible standard singular points may also have

drastic effects on the dynamics but not in the form of catastrophes (see again [R89]).

3. A Reduction Procedure for Differential-Algebraic Equations.

In this section. we consider DAE's of the form

(3.1) A(x)x = G(x), x E R"

with the following properties:

Assumption 3.1. For some open subset U" C R" the mappings A : U" -* £(Rn) and

G : U --+ R n are of class C2 on U and for some fixed integer 0 < r < n, we have

(3.2) {x E Un, G(x) E rge A(x)) = rank A(x) = r
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and the mapping

(3.3) (x,p) E U" x R A(x)p - G(x) E R",

is a submersion.

The submersion assumption for (3.3) implies that the mapping

(3.4) (h. q) E I" x R" I (DA(x)h)p + A(x)q - DG(x)h E R"

is surjective for every (x,p) E U" x R'. Hence the set

(3.5) M = {(x,p) E U" x R" : A(x)p - G(x) = 0}

is a closed n-dimensional C2 submanifold of U n x R1.

Our aim is to show that (3.1) can be reduced to the similar form

(3.6) A,(() (

where now A 1 and G1 take values in £(R') and Rt, respectively. In essence, this reduction

represents a simplification in the quasilinear case (3.1) of the theory developed in [RR91b]

for general implicit DAE's F(x, i) = 0. However, there is a special feature which will be

of crucial importance for the later discussion. While the reduction of [RR91b] is valid only

locally in the vicinity of a point (x.,p.) E F-1(0), the reduction here is local only in the

first variable. This is due to the linearity of (3.1) with respect to the derivative i and.,

roughly speaking, will allow us to analyze phenomena involving "infinite" p. as must be

(lone to discuss impasse points.

WVe consider the set

(3.7) IV= {x EU" :G(x) E rge A(x)

and note that (xp) E Al for some p E R" if and only if x E 1V and hence

(3.8) IV= 7r( ),

where : x R" -- U" is the projection onto the first factor. Then we have:



Proposition 3.1. The set W is an r-dimensional C' submanifold of U n. In addition, if

the set {x E U" : rankA(x) = r} is closed in U' then W is closed in U'.

Proof: By Assumption 3.1, rank A(x) = r is independent of x E IV which implies that

rank -IA1 is constant and equal to r. Indeed, for (x,p) E A, the mapping T(x,P)(7rI,) is

the restriction of 7r to T(x,p)M and, since T(x,p)M is the null-space of the mapping (3.4),

we have

kerT(X,p)(lriM)- {(0, q) E R :A(x)q = 0} = {0} x kerA(x).

Thus, for (x,p) E Al, and hence x E W, we obtain dim ker T(,,p)(rlM) = n-r and therefore

rank -,i, = r as desired.

In view of this result and the subimmersion theorem (see e.g. [D70], [AMR88]) it suffices

to show that 7rm : Al - W is open to prove that TV is an r - dimensional C2 submanifold

of Un . Let M 0 be any open subset of M. In order to prove that 7r(Alo) is open in 14V

let xo E r,(A,10), so that there is some p0 E R" with (xo,po) E Mo. We construct a

continuous function f : Wio M Al on some open neighborhood W 0 C TV of x0 such that

f(xo) = (xo,po) and 7 o f idwo. The continuity of f and (xo,po) E Mo then imply

that f-(Alo) is an open neighborhood of x0 in W 0 and hence in W. On the other hand,

o f = idwo implies f(A1o) C 7r(Mo). Thus it follows that 7r(M) is a neighborhood of

x0 and therefore that 7r(.Mao) is open since x0 was arbitrary.

Before constructing f let us observe that, in general, if

(3.9) V = {x E U" : rank A(x) = r}

and x0 E 1" is a given point, then there exist an open neighborhood 1V, of x0 in V and

continuous functions ei : V ---* R" such that {ei(x),'". , e,(x)} is an orthonormal basis

of rge A(x), Vx E Vo. Indeed, let U01,'" ,UOr be any basis of rge A(xo). Then there

are linearly independent vectors ttl,.. ,- W E R" for which u0i = A(xo)wj, 1 < i < r.

A straightforward contradiction argument now shows that the vectors vi(x) = A(x)wi,

=.... . r. remain linearly independent for all x sufficiently close to x0 in V. Thus. for

all .r in some small open neighborhood Uo of x0 in V the vectors i, (x), 11,.(x) form

a basis of rge A(x) since rank A(x) = r. Now, by applying the Gram-Schmidt process
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to UI(x),... ,ur(x), we obtain an orthonormal basis {ei(x),... ,e,(x)}. The functions

ei : Vo --* R' are continuous since the functions x -, ui(x) are continuous and the Gram-

Schmidt process involves only continuous operations. For future use we note that the

orthogonal projections P(x) E £(IR) onto rge A(x) depend continuously upon x E TT' 0

since P(x) can be expressed as a sum of dyadic products of the vectors el (x),-.- , e(x).

Clearly, the above arguments can be repeated verbatim to obtain continuous functions

Ei : 1V - R , i = 1,-.. , r, such that {6(X),'" - r(X)} is an orthonormal basis of rge A(x)T

(after shrinking V if necessary). In particular, the orthogonal projection P(x) E £(Rn")

onto rge A(x)T depends continuously upon x E Vo.

We return to the specific case when xo E TV. With the constructed neighborhood IT

we obtain the open neighborhood TV0 = TV f Inji of x 0 in ITV. For x E W0 , the equation

A(x)p = G(x), p E {kerA(x)} - - = rge A(x)T , has a unique solution p = p(x). The

components pi(x) of p(x) in the basis ji(x), 1 < i < r, satisfy the (invertible) linear
r

system _aij(x)pj(x) = yi(x), 1 < i < r, where aij(x) = ( i(x),A(x)Ej(x)) and
j=1

-li(x) = (G(x), i(x)) are continuous on Wo0 . Therefore the components pi, and hence p

itself, are continuous functions on TV0 .

We construct the desired function f in the form f(x) = (x,p(x) + q(x)) where q : E-4

IR" is continuous and satisfies q(x) E kerA(x) for x E W0, and q(xo) = po - p(xo) E
kerA(xo). Clearly then f (Wo) C M, f(xo) = (xo,po) and 7r o f = idw. In order to find

q it suffices to note that, in view of the previous remarks Q = I - P : 0 --* £(-R") is

continuous and Q(x) is the orthogonal projection onto kerA(x) = { rge A(x)T}±. Thus,

q(x)= Q(x)(po - p(x0)) satisfies the desired conditions.

Fo the completion of the proof, we must show that TV is closed in U" whenever the

set V of (3.9) is closed in U n . Let {Xkk>l be a sequence in TV with lim xk = xO E U n .

k 00

Then we have x0 E V since TV C V and V is closed in U n . Let V1 C V be an open

neighborhood of xo in V such that P : V'0 --* £(R) is continuous where P(x) denotes the

orthogonal projection onto rge A(x); the existence of such a neighborhood , was shown

above. Because of xk E TV we have P(xk)G(xk) = G(xk) for k > 1. In the limit as

- -, oc it then follows that P(xo)G(xo) = G(xo) which means that G(xo) E rge A(xo)

and therefore xo E TV. E



Remark 3.1: Proposition 3.1 has no global analog for general implicit DAE's F(x, .i) =

0, although a local version exists (see [RR91b]). 0

We are now in a position to describe our reduction procedure. As a motivation, note

that if J C R is an open interval and x : J -+ U a C1 solution of (3.1) then necessarily

x(t) E IV Vt E J. Since W is a manifold this implies that (x(t), i(t)) E TW, Vt E J where

here and subsequently TW is viewed as a subset of TRn = R x 1Rn . Since (x(t), i(t)) E .A

it follows that (x(t),;i(t)) E TW n M, Vt E J. The reduction of (3.1) to the form (3.2)

now is an easy consequence of the characterization of TW f MAM given below.

Let x. E IF. By Proposition 3.1 there exist open subsets 0 C TV and Ur C IR' and a

C 2 mapping p : Ur -+ R' which is a diffeomorphism of U' onto 0. The tangent bundle

TO is the image of the mapping

(3.10) ( , r7) E U' x R' ( D( )r/).

From TO {(x,p) E TIV : x E O} we obtain

(3.11) {(x,p) ETWnlM: xEO}=TOnAl ,

and, using (3.11) and the fact that TO is the image of the mapping (3.10), that

x = V() p = D()7
(3.12) {(x,p) C TW nl M, x E 01 ((A( ))D( )r- G( ( )) = 0,

for some pair ( ,77) E U' x R'.

By definition of (p and IV, G(p( )) E rge A( (p)), V E Ur which implies that

(3.13) A(())D ()q - G(o( )) E rge A(()), V E Ur.

As we shall see now, (3.13) allows us to replace the equation in R" appearing on the

right-hand side of (3.12) by a similar equation in R r .

Let Z. be a given complement of rge A(x.). Then Z. is also a complement of rge A(x)

for all x E TV sufficiently close to x.. This can be shown, for instance, by using the fact

10



that the orthogonal projection P(x) onto rge A(x) depends continuously on x E 11, as

we saw in the proof of Proposition 3.1. Now suppose that there is a sequence {Xk}l>l in

IV tending to x,. such that Z. is not a complement of rge A(xk). Since rank A(xk) = r

and dimZ. = n - r, there exists a unit vector Uk E rge A(xk) n Z. and, by extracting a

subsequence, we may assume that lini Uk = u. Clearly, u is a unit vector on Z, and, since
k--c

P(xk)uk = Uk it follows that P(x.)u = u; that is, u E rge A(x.) which is absurd.

Thus, by shrinking 0 and with it Ur, if necessary, we can ensure that Z. is a complement

of rge A(p( )), for E Ur. Equivalently, the projection operator P. onto rge A(x.) relative

to the decomposition

(3.14) R n = rge A(x.) EZ

is a linear isomorphism of rge A(y( )) onto rge A(x.) for all E Ur. By (3.13) this implies

that for any pair (<,77) E Ur < R' we have A(!(p))D()r - G(()) = 0 if and only if

-P.G( ( )) = 0. Using this equivalence in (3.12), we infer that

(3.15) {(x,p) E TW n M. x E 0} 4=>
A - G1( ) = 0,

for some pair (7) E Ur x Rr" where we have set

(3.16) A,({) =P.A(y( ))Dp()

(3.17) G,( ) P.G(()).

Note that by identifying rge A(x.) with IR we see that the mappings A 1 and G1 map into

£(R) and lRr , respectively, and are of class C1 .

Suppose now that J C R is an open interval and x : J -+ U" a C1 solution of (3.1). As

noted earlier, we have x(J) C '. If it so happens that x(J) C 0 so that (x(t).'(t)) E

TTV R'i M. and x(t) E 0 for all t E J. then it follows from (3.15) that the C 1 function
. - U defined by (t) = -I o x(t) satisfies

(3.1S) = Vt E J.

11



with A IG, given by (3.16) and (3.17), respectively. Conversely, for every C 1 solution

: J --+ U of (3.10), x(t) = po (t), is a C 1 solution of (3.1). Henceforth, Equation (3.18)

will be referred to as the reduction of (3.1) near x,.

4. Existence Theory for Nonsingular DAE's of Index 1.

The results presented in this section are particular cases of the general theory in [RR91b]

but the main existence and uniqueness Theorem 4.1 can here be given an independent and

much simplified treatment by taking advantage of the special quasilinear form (2.1) of the

DAE and by confining attention to index 1 problems as defined below. We retain the

hypotheses and notation of Section 3.

Definition 4.1. The quasilinear system (3.1) (satisfying Assumption 3.1) is a nonsingular

DAE of index 1 if

(4.1) {x E U'', G(x) E rge A(x)TXW ,(2)W rank A(x)lTw = rank A(x)(= r).

For nonsingular DAE's of index 1 the local existence and uniqueness theory is very

similar to that for ODE's:

Theorem 4.1. Let (3.1) be a nonsingular DAE of index 1. Then, for any given x. E

IV] = ,(TW n AM) C 11 and t,. E R, there exists an open interval J containing t. and a

unique C' solution x : J -+ U n of

(4.2) A(x)i = G(x), x(t,) = x,.

MIoreover. no C 1 solution of (4.2) exists for x. TV,.

Proof: In Section 3 it was already noted that when x : J U" is a C 2 solution of (3.1)

ten (x(t).Nr(t)) E TWV n . Vt E J. and hence x(.J) C 1 1 = 7r(TWl Anl 1). In particular.

(4.2) cannot have a C' solution if x IT',.

Suppose now that x. E TVI C 11' so that (x.,,p,) E TIV n Al for some p. E R". Then

1) C T,. WV and A(x,)p, = G(x,) implies that G(.r,) E rge A(.r,)IjT. I and therefore. by

(')Iience x E IW; see (3.7).
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(4.1), that rank A(x.)Il.T , = r. Equivalently, this shows that

(4.3) A(x.) E GL( T. IV, rge A(x.) ).

The reduction procedure of the previous section ensured the existence of a C2 diffeo-

morphism p of an open subset Ur of rr onto an open neighborhood ( of x. in W such

that on ( (4.2) is equivalent to

(4.4) = G,( ), (t.) =

where . = p-l(x.), Ai( ) = P.A( (p))Dp( ), Gi( ) = P.G((p( )) and P. denotes a

projection operator onto rge A(x.).

For = . we have Ai( .) = A(x.)Dy( .) E GL(Rr, rge A(x.)) by (4.3) and

Do( .) E GL(Rr,T,.W). Thus, in the vicinity of ., (4.4) is equivalent to the explicit

ODE = A,( )-'G1( ), (t.) = .. Hence the classical ODE theory guarantees that on

some open interval J containing t. there exists a unique C' solution J J - U r of (4.4).

Clearly then x = o is the unique C' solution of (4.2). 0

Remark 4.1: It is easily checked from the above proof that the solution x in Theorem

4.1 is actually of class C 2 . 0

The Definition 4.1 of a nonsingular DAE of index 1 does not rule out the existence

of points x. E V where rank A(x.)IT, w < r. Such points do not belong to the set

W, = r(TIV n M) and hence, by Theorem 4.1, no C' solution to the corresponding initial

value problem (4.2) exists. Nevertheless, on some interval J = [t. -T, t.] or J = [t, t. + T]

with T > 0, continuous functions may well exist which are differentiable on J , {t.) and

satisfy there A(x(t))i(t) = G(x(t)). The impasse points discussed in the next section allow

for solutions of this type.

5. Impasse Points of Nonsingular DAE's with Index 1.

First, we recall the definition and basic properties of the intrinsic derivative of a vector

bundle morphism (see e.g. [AGV85], [GG73]). Let X be a manifold and E,F vector

bundles with base X. A vector bundle morphism p : E - F can always be viewed as a
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section p : X --+ Horn (E, F) of the vector bundle Horn (E, F) with base X. Thus, for

x E X, we have p(x) = (x,B(x)) where B(x) E C(E.,,F.) and, as usual, E., and F, denote

the fibers of E and F, respectively, above x E X. If p is differentiable, Tp is a linear

mapping Txp : TxX -+ Tp(x) Hom (E,F). As Tp(x) Horn (E,F) _ T1 X x 1(E,,F,) and

p is a section, we have (Txp)h = (h, B(x)h) E TxX x C(E,, Fx), Vh E T1 X, where then

B(x) E C(TxX,C(Ex, F.)).

The intrinsic derivative of p at x E X is defined as the mapping (loc. cit.)

(5.1) h E T7X o (x)[B(x)h] Ik, B() £(kerB(x), coker B(x)),

where a(x): Fx -* coker B(x) = F 7 /rge B(x) is the canonical projection.

When X is an open subset of R' and E = X x R", F = X x R ' then B is a mapping

B : X --+ L(R n , 1 R) and B3(x) is just the derivative DB(x). Hence the intrinsic derivative

(5.1) becomes

(5.2) h E R' a(x)[DB(x)h]lke,, ,z E £(kerB(x), coker B(x)),

where a(x) : R m --+ coker B(x) = R m /rge B(x) is the canonical projection. It is well

known that, in general, the calculation of the intrinsic derivative (5.1) reduces to the

I special case (5.2) via local trivializations of the vector bundles E and F (loc. cit.).

In our setting, a useful choice is given by X = TV, E = TIW, F = Rw(A) where

(5.3) Rw(A) = {(x,q) E TV x R"; q E rge A(x)}.

As rank A(x) = r is independent of x E IV, it is indeed easily seen that Rw(A) is a vector

bundle with base IV and r-dimensional fiber rge A(x), x E W. We set

I (5.4) A : (x,p) E TW ) Aw(xp) = (x, A(x)p) E Rw(A),

where. alternatively, Al' may be viewed as the section

(5.4') Aw : x E T11 (x. A(X)ITW) E Hom (T.J R1w(A)).
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Because of the embedding rge A(x) C R", coker A(x)lrT, = rge A(x)/ rge A(x)T II

may be identified with

(5.5) coker A(x)r.w = rge A(x) n (rge A(x)l 1x)' ,

so that c(x) : rge A(x) -+ coker A(x)lTw corresponds to the restriction to rge A(x) of

the orthogonal projection onto coker A(x),..

Definition 5.1. Let (3.1) be a nonsingular DAE with index 1. The point x. E It is an

impasse point of (3.1) if the two conditions

(5.6) dimker A(x.)I,,.,, = 1 (i.e. rank A(x.)Ix" w = r - 1).

(5.7) 'DAw(x.)Ik(, A )JT . W o 0.

hold, where iDAw( x.) denotes the intrinsic derivative of the bundle morphism Aw' at x".

The impasse point x. is said to be accessible or inaccessible if

(5.8) a( )(e, ) (G(x.), ) ((DAw(x.)e)e, F)

is < 0 or > 0, respectively, for some pair (e, F) of nonzero vectors in kerA(x.)I,,. W x

coker A(x.)IT , where (., .) denotes the usual inner product of R".

A few comments are in order. First, as in the case of (2.6) it follows that the form

(5.8) must have either a positive or negative value for all pairs of nonzero vectors (e, i)

in ker A(x.) IT.., x coker A(x.)I T . 1 if only this holds for one such pair of vectors. Sec-

ondly. it follows from (5.6) that 2DAw(x.) is a linear mapping from T1 V into the one-

dimcnsional space I(kerA(x.)IT . 1, coker A(x. )IT.. 11 )" Hence, condition (5.7) is equiva-

lent to the assumption that

(5.9) 'DA4(x.)c 5 0,
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for some, or equivalently every, nonzero vector e E ker A(x.)lT" w. In turn, (5.9) holds if

and only if for some, or equivalently every, nonzero vector E E coker A(x.)i,.. we have

(using the identification in (5.5))

(5.10) (('DAw(x.)e)e,E) 5 0.

On the other hand, because of x. E TV it follows that G(x.) E rge A(x.) and there-

fore by (5.6) and the hypothesis that the DAE (3.1) is nonsingular (Definition 4.1) that

(G(x.), E) # 0 for E E coker A(x.)I," -, {0}. Together with (5.10) this shows that the

left-hand side of (5.8) is nonzero. Moreover, it is obvious that its sign is independent of

the nonzero vectors e, E.

Remark 5.1: It should be emphasized that the intrinsic derivative 'DAw cannot be re-

placed by the much simpler DA in (5.7) or (5.8), although the conditions obtained through

the substitution formally make sense but are nevertheless irrelevant. To corroborate the

above statement, it suffices to note that when iDAw is replaced by DA in (5.7) or (5.8),

these modified conditions never hold when A(x) is independent of x, whereas constancy of

A(x) is not an obstacle to the existence of impasse points as we will see in the next section.

The following lemma relates Definition 5.1 to standard singular points of ODE's (see

Section 2) via the reduction procedure of Section 3.

Lemma 5.1. Let (3.1) be a nonsingular DAE with index 1. The point x. E ,V is an

accessible or inaccessible impasse point of (3.1) if and only if = (p- 1 (x.) is an accessible

or inaccessible standard singular point, respectively, of the reduction (3.18) of (3.1) locally

near x,.

Note: From this characterization, it follows that a nonsingular DAE may reduce to a

singular ODE. Of course, this is not due to any ambiguity in the choice of terminology but,

rather, to the fact that the reduction procedure may, of necessity. give rise to singularities.

Proof: The proof follows from the calculation of the intrinsic derivative 'DAw(x.)

using appropriate trivializations of the bundles TIF and Rw(A) near x.. A trivialization

of TIT near x, is given by the inverse of the mapping ( E U' x R' .

where [T' is an open subset of R' and a diffeomorphism of Ur onto an open neighborhood
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( of x. in W. On the other hand, with a projection operator P. onto rge A(x.), the

mapping (x,q) E Rw(A) - (p-(x), P.q) E U x rge A(x.) provides a trivialization

of Rw(A) near x. after shrinking Ur if necessary. Indeed, as noticed in the proof of

Proposition 3.1, we have P. E GL(rge A(x), rge A(x.)) for x E W sufficiently close to

X*.

The local expression of the bundle morphism Aw in (5.4) becomes

(5.11) 7)( E x R' P E Ur x rge A(x.) U' x R'.

As mentioned at the beginning of this section, the corresponding local expression of

DAw(x*) is the intrinsic derivative at = -l(x*) of the morphism (5.11) of trivial

bundles over an open subset of IR'. Thus, in line with (5.2), it is given by h E R'

k, A1 ( where

(5.12) Ai( ) = P*A((p( ))DV( )

and a( *) :R' -+ I'/rge Ai( .) is the canonical projection.

Conditions (5.6) and (5.7) amount to

(5.13) dimkerA,( .) = 1 (i.e. rank Ai() =r- 1)

and to 1 E kerA,( .) - a( *)[DAl( *)h]IkrA, . 0, respectively. But, in view of

(5.13). it is clear that the latter relation reads

(5.14) (DAl(,7)Iq rge Al ( .), Vr7 E ker A,. f {0}.

Finiallv. with

(3.13) aG( ) = P.G(p( )). V E U',
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we have Gi( .) = P.G(x.) = G(x.) since P. = I on rge A(x.) and x. E W. As

rgeA(x.)l1 zW = rge Aa( ,) is obvious from (5.12) and Dy (.) E GL(Rr,TZ.WV), it

follows that

(5.16) G(x,) rge A(x.)IT. G,(<> ) rge Al( .).

Suppose now that (3.1) is a nonsingular DAE and x. E W is an impasse point of

(3.1), so that (5.13) and (5.14) hold, and G(x.) rge A(x.)T , by (5.6) and the

nonsingularity of (3.1). Then it follows from (5.16) that GI( .) rge A,( .), and hence

that . = p-'(x.) is a standard singular point of the reduction (3.18) of (3., near x.

since A1 in (5.12) and G1 in (5.15) are exactly as in that reduction. Conversely, if . is a

standard singular point of the reduction of (3.1) near x., then (5.13) and (5.14) hold (and

also G(x.) rge A(x.)IT," w by (5.16)), and hence (5.6) and (5.7) also hold. This means

that x* is an impasse point of (3.1).

If x. is an impasse point of (3.1); that is, if = p-'(x*) is a standard singular point

of the reduction (3.18) of (3.1) near x*, it is straightforward to check that the criteria for

accessibility and inaccessibility in Definitions 5.1 and 2.4 are equivalent. El

Remark 5.2: From the above proof we see that, by nonsingularity of the DAE (3.1),

the condition Gj( .) rge Ai( .) is always satisfied when AI( .) is singular and hence

need not be checked again. In other words, to prove that . is a standard singular point

of the reduction of the nonsingular DAE (3.1) (with index 1) near x., it suffices to show

that conditions (2.3) and (2.5) of Definition 2.1 hold with = .. El

As a by-product, Lemma 5.1 yields an equivalent and useful definition for impasse points

of nonsingular DAE's. This definition is useful, for it rarely happens that intrinsic deriva-

tives can be calculated without making explicit use of trivializations and local coordinates.

Definition 5.1 is mostly theoretical, but is has the advantage of being intrinsic: that is.

independent of any reduction procedure.

Motivated by Lemma 5.1 and the definition of solutions of singular ODE's in the vicinity

of standard singular points (see Definition 2.3), we introduce the concept of a solution of

a nonsingular DAE with index 1 ne'ar an impasse point as follows:
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Definition 5.2. Let the DAE (3.1) be nonsingular with index 1 and x. an impasse point

of (3.1). For given t. E R, a solution of the initial value problem

{A(x);i = G(x),

(5.17)
x(t.) = X.,

is a continuous function x : J --* R' on an interval J = [t., t. + T) or J (t. - T, t.] for

some T > 0 which is of class C1 on Jo = J \ {t. } and satisfies A(x(t))i(t) = G(x(t)) for

t E JO.

It is straightforward to check that the reduction procedure of Section 3 transforms the

solutions of (5.17) in the above sense into solutions of

{ Al() = Gl( ),

in the sense of Definition 2.2. where Al( ) - G1 (t) is the reduction of (3.1) near x., and

vice-versa. Thus, combining Theorem 2.1 and Lemma 5.1, we find at once:

Theorem 5.1. Let the DAE (3.1) be nonsingular with index 1 and let x. be an accessible

(resp. inaccessible) impasse point of (3.1). Then, given t. E R, the initial value problem

(5.17) has exactly two solutions in the sense of Definition 5.2, both defined either on

J = [t.,t. + T) (resp. J = (t. - T,t.]) for some T > 0. Moreover, liml-1. Ii(t)l = oc.

Remark 5.3: Naturally, the solutions found in Theorem 5.1 are C1 solutions of (5.17)

on J0 = (t.,t. + T) or J0 = (t. - T,t.) and hence are automatically C2 on this interval

(see Remark 4.1). Moreover, we have x(J ° ) C WT71 = ir(TW n Al) by Theorem 4.1.

This shows that impasse points of (3.1) lie in the closure of IWV in W. In fact, they lie

on the boundarv of I, in VV since x. E TV,1 is impossible for an impasse point by the

nonsingularity of (3.1). E

The behavior of the solutions of (5.17) in the vicinity of an impasse point x., described

iii Theorem 5.1, justifies the terminology "impasse point", at least in the accessible case,

sinlce such points are reached in finite time by trajectories emanating elsewhere in TI"
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which cannot be continuously extended beyond that impasse point. A justification of the

terminology in the inaccessible case can be seen in the fact that inaccessible impasse points

become accessible by simply reversing the evolution in time.

Because C' solutions of a (not necessarily nonsingular) DAE (3.1) lie in ITV = 7r(W n

TM), their closure relative to the open set Un must lie in IV when IV is closed in U" , as, for

example when the set {x E U' : rank A(x) = r} is closed in U' (Proposition 3.1). This is

the case in many practical applications but not the only mathematically sound possibility.

When WV is not closed in U", it becomes possible, a priori at least, for points x. 1v to

be reached in finite time by C' trajectories that cannot be continuously extended beyond

x.. Such points could also be called impasse points but they are not covered by our

theory. Likewise, there may be points x. E IV corresponding to higher singularities of

the reduction; that is, with dim ker Al( *) > 1, at which C' trajectories stop. Examples

of this kind are easily obtained by considering systems of DAE's in independent variables

all having at (say) 0 an accessible impasse point in the sense of Definition 5.1. This is to

say that our treatment of impasse points of DAE's is not exhaustive and that the impasse

points of this paper, definitely the most frequently encountered ones, should perhaps be

called "standard impasse points" since other types may exist in physical problems.

6. Impasse Points and Foldpoints.

A simple class of DAE's (3.1) has the form

g(xI,x2) = 0 E R'-' ,

(6.1)

1-2 = f(xIx 2 ) E R',

where x = (xr,X2) E R x R' and f : U" -- R",g :U" ;-- Rn - r are C2 mappings.

(The differentiability assumption is retained here for consistency with the previous setting
although it would suffice to assume only that .f E C').

As we shall see, for (6.1) the impasse points of the previous section coincide essentially

with the simple foldpoints of g-'(0) relative to the splitting R" = R" - r i Rr-. This result

relates our work to various discussions of impasse points found in the literature where the

form (6.1) is assumed. notably [CDS9] (see also [NI91]).
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Theorem 6.1. (;) The DAE (6.1) satisfies the general hypothesis of Section 3 if and only

if the mapping g is a submersion in U".

(ii) If (i) holds then (6.1) is nonsingular with index 1 if and only if

(6.2) {x E g-'(0), D 2g(x)f(x) E rge Dig(r)} = Dig(x) E GL(R"-r),

where D0 denotes partial differentiation with respect to xo, a = 1,9.

(iii) If both (i) and (ii) hold then x. E LT is an impasse point of (6.1) if and only if

X. Eg g-(0) and

(6.3) dim kerDlg(x.) 1,

(6.4) (D~g(x.)(u)2 ,fi) $ 0,

for some, or equivalently all, pairs of nonzero vectors (u,il) in kerDIg(x.) x kerDg(x*)T ,

where (,.) denotes the natural inner product ofRf- '.Moreover, the impasse point x. is

accessible or inaccessible if and only if

(6.5) a(x.)(u, ii) - (D29(X. )f(X. ) (Du i

is < 0 or > 0, respectively, for some, or equivalently every, pair (u, i!) of nonzero vectors

in ker Dlg(x.) x ker Dlg(x.)T .

Proof. The DAE (6.1) is the special case of (3.1) in which

(6.6) A (0 0) , 1r identity of Rr,(6.6) A(.r) = 0 Ir

is independent of x and

(g(x) '- r r
(6.7) G(x)= ( E xR

2f( )
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For the proof of (i) we write

p = E R x R', F(x,p) = A(x)p - G(x) --

PP 2 - f(X)

Then for (h, q) E xR' x R" we have

DF(xp)(hq) = 
D g ( x )

(q,- Df (x)h/

which makes it obvious that F is a submersion on U" x IR" if and only if g is a submersion

on U'. In this case, M ='-1(0) = {(x,p) E U n x xR; x E g-1 (0),p2 = f(x)} has

the projection W = 7r(M) = g-'(0). Since A(x) is independent of x and has rank r the

condition rank A(x) = r, Vx E W, holds trivially.

For (ii) assume that g is a submersion on U". Because of IV = g-'(O) we have

(6.8) x E W E TWfh = () E R x Rr: Dlg(x)hl + D 2g(x)h 2 = 0}
(,h2)

and from (6.6) and (6.8) we find that

(6.9) kerA(x)li.w = kerDlg(x) x {0}

and

(6.10) rge A(x)i,,, E () E R r:x :3h E R - Dig(x)hl + D 2 g(x)h 2 = 01.

Thus. it follows from (6.7) and (6.10) that x E W = g-(0) and G(x) E rge A(x)l,,TV if

and only if x E g-'(0) and D 2 g(x)f(x) E rge Dlf(x). Also, since TrW is r-dimensional,

rank A(x)T.1w = r if and only if A(x)IT is one-to-one: that is, by (6.9) if kerDig(x) =

{0}. In turn, this amounts to Dig(r) E GL(Rnr-), and hence the condition (6.2) is indeed

equivalent to the DAE (6.1) being nonsingular with index 1 (see Definition 4.1).
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Finally, for the proof of (iii) let x. E U' be an impasse point of (6.1). Then, by

definition, x. E IV = g-'(0). To prove that conditions (6.3) and (6.4) characterize x. as

an impasse point, we use Lemma 5.1 to show that (6.3) and (6.4) are equivalent to the

condition that . = -'(x.) is a standard singular point of the reduction of (6.1) near x.

(under the standing assumption that (6.1) is nonsingular with index 1).

With (;1 U: T  IV = g-l(O) being a C 2 diffeomorphism of an open subset Ur of WR

onto an open neighborhood 0 of x. in TV, the method of Section 3 with A and G given

by (6.6) and (6.7), respectively, shows that the reduction of (6.1) near x. has the form

(6.11) A,( G

with

(6.12) Al( ) = P.Dc( )

where P. is the projection onto 1R' corresponding to the splitting R' = R " x R' and

(6.13) Gl( ) = f( (())(= P.G(v( ))).

With C. = -(x.) we have DV( .) E GL(R', T ,.W). Thus, by (6.8) and (6.12) it

follo~vs that

(6.14) kerAl( .) = D( .) - 1 (kerDlg(x.))

and therefore that dimkerA( ,) = 1 if and only if dimkerDlg(x.) = 1; that is, if (6.3)

holds. Now, we show that (6.4) is equivalent to the condition

(6.15) (DAI( .)71)1 :A rge A( .),

where 7 E kerAl( .) 0 {} and thus, by (6.14), 71 = D(.)-u,u E kerDg(x.) N {0}.

Because of dim kerAz((.) = 1, (6.15) amounts to

(6.16) ((DAx(I ) , ) z 0,
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where i/ is any nonzero vector in (rge AI( .)) - . We claim that any such vector has

the form = D 2g(x.)Tf with fi E kerDig(x.) -, {O}. To see this, note first that

Dg(x.)T E £(R-r,R ) is one-to-one since Dg(x.) E £(Rn,Rn - r) is onto. Thus, for

5 E kerDig(x. )T  {O}, we have D 2g(X)Tii : 0. Next, from (6.8) and D((.) E

GL( ', T, TV) we deduce that

(6.17) rge A,({.) = {h2 E R' : 3hi E R", Dg(x.)h + D 29(x.)h 2 = 0}.

It follows at once that D 29(x.)r E (rge A,( .))± for all i E kerDig(x.)T - {0}. This

proves the claim since, evidently, D2g(x.)rzi 5 0 and (rge A, ( .))' is one-dimensional.

From (6.12) we deduce that (6.16) may be written as

(6.18) (P.D 2 ( 7)(rh7), (D 2g(x.))Tfi) # 0,

for i= Dj ( .)-u and (u,fi) an arbitrary pair of nonzero vectors in kerD1g(x.) x

ker Dlg(x. )T. To calculate the left-hand side of (6.18) we use the relation gop _ 0 follow-

ing from the definition of c. Differentiating twice at = we obtain D 2g(x .)(D(. )7 )2 +

Dg(x.)D' (x. )(71) 2 = 0. Taking now the inner product with ii and using 77 = D( .)-lu

we get (D2 p( .)(,1 ),(Dg(x.))T ) = (D2g(x.)(u,u),ii). But the left-hand side is just

(P.D( .)(ri,) (D 2g(x.))Tfi) because (Dlg(x.))Tii = 0 and the right-hand side is

-(D g(x.)(u,?I), iL) because Cf u E kerDig(x.) C 1R" - . Thus,

(6.19) (P.D2 (t.), U),D2g(x)
T i) ),

which shows that (6.4) is equivalent to (6.18) and hence to (6.15).

By Remark 5.2 the equivalence of (6.3) with dimkerAi( .) = 1 and of (6.4) with (6.15)

suffices to prove that, together, (6.3) and (6.4) are equivalent to x. being an impasse point

of (6.1).

For the accessibility or inaccessibility criterion note that by the previous calculation

((D.4( .)17)?JO) = -(D(x.)(u, n),i) and that by (6.18) and ij = D 29 (x.)Tj we have
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(G,( ,)= (f(x.), D 2g(x)Ti ). From these relations and the criterion (2.6) for accessi-

bility or inaccessibility of . we obtain the criterion (6.5) for the accessibility or iiaccessi-

bility criterion of x.. F1

Under the sole assumption that g is a submersion in U' the conditions (6.3) and (6.4)

characterize x, E g-1 (0) as a simple foldpoint of g-'(0) relative to the splitting Rn =

Rn-r x IRr; that is, as a turning point in the case when r = n - 1 and hence g is scalar. The

accessibility or inaccessibility criterion (6.5) has no geometric interpretation and translates

a purely dynamic property.

In [CD89], Chua and Deng characterize an impasse point of (6.1) as a point x. =

(x-1 ,x.2 ) such that the mapping (xjA) - g(xI,x.2 + Af(x.)) has a turning point at

(-,l.,0). Now, a simple (or generic) turning point (xl.,O) of this mapping is charac-

terized by the three conditions: dimkerDig(x.) = 1, D 2g(x.)f(x.) rge Dlg(x.) and

(D g(x*)(ZI )2 , ii) 7$ 0 for every pair of nonzero vectors (u, ii) E kerDmg(x.) x ker Dig(x.) T .

In our exposition, the first and third of these conditions are exactly (6.3) and (6.4), re-

spectively, and the second one is contained in (6.2) and (6.3). Thus, for the special case

of (6.1) our definition of impasse points is essentially the same as that of [CDS9].

7. Examples.

7.1 A nonlinear LPC network. Consider a nonlinear LRC network, consisting of a

resistor branch (1), a capacitor branch (2) and an inductor branch (3) in parallel. Denote

by Ii the currents in the ith-branch, and by V the (common) voltage drop in each branch.

Let C(V) and L(1 3 ) represent the capacity and the inductivity, respectively, where C

R --- (0. c) and L : IR -- (0. oo) are smooth enough functions (see e.g. Smale [S72] or

Ttkeims [T76]). From Kirchhoff's law, we have I + 12 + 13 = 0. while the time-evolution

of the voltage drop and currents in the capacitor and inductor branches is given by /2

C( )'. V = L(13 )13 . Finally, in the resistor branch (1), 1 and V are related through an

equation of the form g(Ii, V) = 0, where g : R x IR -- R is a smooth enough function.

For convenience, we shall use the variables xi = I, 1 < i < 3, 7'4 = V. In this notation.

the equations governing the evolution of the voltage drop and currents of the above network
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have the form

(7.1) A(x)i= G(x)

U where X = (Xl, X 2 , X 3 , X4 )T and

1 0 0 0 0 X1 + X2 + X3

(7.2) A(x)= 0 0 L(x3) 0 X4 )

0 0 0 C(x4 ) X2

Clearly, rank A(x) = 2, Vx E R4 , since L and C assume strictly positive values by

3 hypothesis. Under the mild condition that (Og/0 1x4)(X1,X4) # 0 for x E R4, the reduction

procedure of Section 3 can be applied. In fact, here the manifold TV is given by TV = {x E

R 4 : X + + X2 + X3 = 0, g(X1l,X4) = 0}, and hence can be parametrized by = X2),

i.e. T" {(Il,x2, -XI - X2,O(xl)) : (XI,X2) E R2 }, where 0 : R -- R is characterized by

g(xi.0(xi)) = 0. We leave it to the reader to check that the DAE (7.1) is nonsingular

(Definition 4.1) in some open subset 4 C ]R 4 if and only if

4dO(7.3) {x E Vfl 4 T (x) 01 x2 0,

and that the reduced system reads

3 (7.4) AI(xi~x2 ) =G(x1 .x 2 )!
XX2

3 where

-41(xI .r2 L(-x 1- x2) L(-x 1) X2 G(xl,r2)= Ox

.4!(.l.r =0 C'(O( x 0 ) r- (xl )X2

3 From Lemma 5.1- X = (X1r, X 2 --X - -*2, O(X )) E T'V nl L4 is an impasse point of (7.1) ifdO 
d20

1nd only if (x 1, x2) is a standard singular point of (7.4): that is. - ( )= 0 ,-/ xr) # 0.
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Under the assumption (7.3) this is straightforward to verify; see also Remark 5.2. Moreover,

accessibility or inaccessibility of the impasse point depends upon X2. 77(Xi) < 0 or > 0,

respectively. For instance if g(xI,x 4 ) = X4 - Xi- Y, y E R (an example chosen in

Takens [T76]), then O(XI) = - + x2 and the impasse points of (7.1) are points of the form

(0, X2,-x2,Y), x 2 - 0 (accessible if X2 < 0, inaccessible if x 2 > 0). The DAE (7.1) is

singular in any open subset U4 containing the point (0, 0, 0,y), for (7.2) fails to hold and,

in fact, this point is not an impasse point but a "funnel" if -y 0 0 (see [T76]; see also

[RR92] for further comments and numerical results).

Remark 7.1: The choice of A(x) and G(x) in (7.2) is not canonical. For instance, (7.1)

is unchanged if. instead of (7.2), we choose

0 0 0 0 1+±X2 + X3

A~) 0 0 0 0g~ (Xl, X4)
A(x)= 0 0 1 ,G() L x4/L(X3) 9

0 0 0 1x 2/C(x 4 )

With the above choice, the problem fits into the framework of Section 6 and hence the

impasse points of (7.1) appear as foldpoints of the mapping

( + X2 + x3
( X l X 2 X 3 , X 4 ) ! 9 ( I ,

relative to the splitting R4 = R 2 x R2
.

(X1,X2) i(X 3 ,X 4 )"

7.2 One-parameter stationary problems. We shall show that one-parameter sta-

tionary problems, in which no evolution of any kind is involved, can be reformulated as

a quasilinear DAE, usually of index < 1, and that their turning points coincide with the

impasse points of this paper. In fact, all the singularities, bifurcations and others, that

may appear in a stationary one-parameter problem may also be characterized as singular-

ities of the DAE formulation. Thus, the analysis of DAE's, their impasse points and their

sii igulari ties encompasses the entire study of one-parameter stationary problems, their

turning points and singularities.
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Let us begin with the equation

(7.5) f(Ax) = 0,

where f : R x R -* IR' is a smooth enough function. If solutions are sought in the form

x = x(A), a C1 function of the parameter A (which is legitimate as long as the derivative

Dxf(Ax) is invertible) then x(A) is a solution of D f(A,x) + Dxf(A,x)* = 0, where

the dot represents d/dA. Introducing the auxiliary equation A = 1, this equation can be

rewritten as

I where

i A(A, x)=.
AD() f(A,x) Df(AX))

Evidently, A(A, x) is singular if and only if Dxf(A, x) is singular, and a straightforward

verification shows that (A, x) is a standard singular point of (7.6) if and only if

(i) dimkerDxf(A,x)= 1,

(ii) D, f(A,x) q rge Df(A,x),

(iii) D'f(A,x)h' rge Dxf(Ax), Vh E kerDxf(A,x)- {O}.

As is well-known, conditions (i) - (iii) above characterize the solution (x, A) of (7.5) as a

simple turning point of (7.5). Since if f is constant along the trajectories of (7.5), standard

singular points of (7.6) along trajectories emanating at (Ao, x0 ) with f(Ao, xo) = 0 coincide

with the simple turning points of (7.5). More generally, equivalence between singularity

of A(A,x) and singularity of D , f(A, x) shows that all the singularities of (7.5) appear as

singularities of the quasilinear singular ODE (7.6).

Qu asilinear DAE's rather than ODE's are needed to reformulate constrained problems.

i.e. problems of the form

( g(x) = 0 E R "- ',

f(A,x) = 0 E R.
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In (7.7), the equation g(x) = 0 may be viewed as a condition characterizing the admissible

"state" variables x. Using the same procedure as before, i.e. differentiating the identity

f(A, x(A)) = 0, we see that (7.7) can be reformulated as the problem of solving the DAE

(7.8) A(A,x) G(A, x),

where A(A, x) is the (n + 1) x (n + 1) matrix

I 1 0\
A(A, x) = (Ax) Dxf(A,x)

0 0

and G(A,x) ER x R' x 11n -
, R " + 1 is given by G(A,x) = (1,0, g(x))T (independent

of A).

It is easily seen that under the general conditions ensuring that (7.8) is a nonsingular

DAE, the impasse points of (7.8) along trajectories emanating at a point (A0 ,xo) where

g(xo) = 0, and f(Ao,xo) = 0, coincide with the simple turning points of the equation

f(A, =()) 0, where . :IR --, R" is a local parametrization of the manifold g-'(0) (Note

that g-l(0) is a manifold because (7.8) is a nonsingular DAE).

8. Higher Index Problems.

It was shown in Section 3 that under Assumption 3.1, the n-dimensional quasilinear

DAE in U n C R"

(8.1) A(x)i = G(x)

can be reduced locally to the r-dimensional form

(8.2) Ai( ) = Gi( ),

where r < n is the (constant) rank of A(x). Recall that (8.1) was called a nonsingular

DAE with index 1 if the conditions of Definition 4.1 are fulfilled. If so, (8.2) reduces to

the ODE = Ai( )-'GI() (see the proof of Theorem 4.1).
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Now, it may also happen that (8.2) is a nonsingular DAE with index 1. In this case.

(8.1) will be called a nonsingular DAE with index 2. From the reduction procedure of

Section 3, it appears that if . is an impasse point of (8.2), the images x(t) = ( (t)) of

the two solutions of (8.2) emanating or terminating at . (in the notation of Section 3)

solve (8.1) and both emanate or terminate at x. =( ). Also, no other solution of (8.1)

passing through x. exists. Thus, x. possesses all the properties characterizing impasse

points of quasilinear DAE's of index 1 and hence should be referred to as an impasse point

of the quasilinear DAE (8.1) of index 2. It is straightforward (but somewhat cumbersome)

to check that, as expected, this definition is independent of the specific parametrization;

used to reduce (8.1) to the form (8.2). It is equally clear how higher index (quasilinear)

DAE's and their impasse points can be defined. Naturally, these definitions implicitly

require sufficient smoothness of A and G in (8.1). Note that even if A(x) in (8.1) is

independent of x, Ai( ) in (8.2) will not be constant in general. Thus, for higher index

problems, the simplified framework of Section 6 cannot be used.
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